EFFECT OF THE NATURAL COMPONENTS OF THE EARTHQUAKES ON THE BUILDING RESPONSES

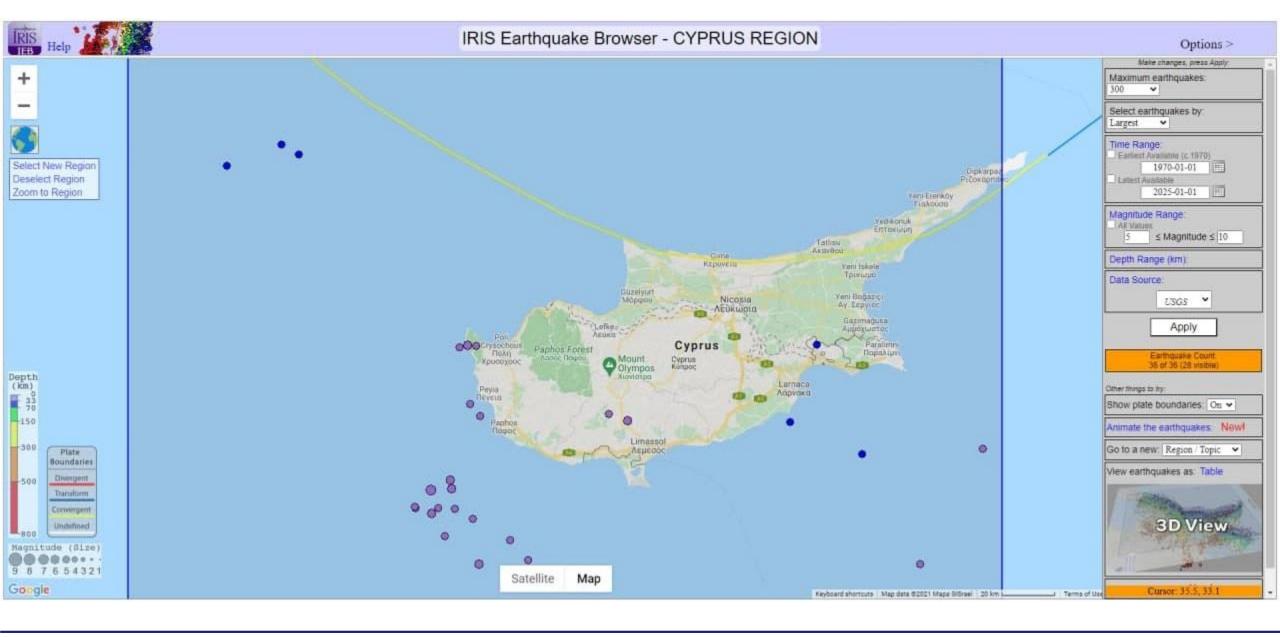
Dr, MOHAMMAD R. B. KARIMI

SRUCTURALAND EARTHQUAKE ENGINEERING CYPRUS INTERNATIONAL UNIVERSITY

K.T.M.M.O.B İNŞAAT MÜHENDİSLERİ ODASI CHAMBER OF CIVIL ENGINEERS

1. National Civil Engineering Symposium

CONTENTS


- 1. Seismicity Region (Cyprus)
- 2. Ground Motions Components
- 3. Selected Ground Motions
- 4. Modeling
- 5. Results and Discussion

K.T.M.M.O.B İNŞAAT MÜHENDİSLERİ ODASI CHAMBER OF CIVIL ENGINEERS

1. National Civil Engineering Symposium

K.T.M.M.O.B İNŞAAT MÜHENDİSLERİ ODASI CHAMBER OF CIVIL ENGINEERS

1. National Civil Engineering Symposium

1. Ulusal İnşaat Mühendisliği Sempozyumu

25-26/06/2021

IEB export: 36 earthquakes as a sortable table.

from 1970-01-01 to 2025-01-01, with magnitudes from 5 to 10, depths from 0 to 900 km, with priority for size, limited to 300, showing data from UEGS.

CYPRUS REGION

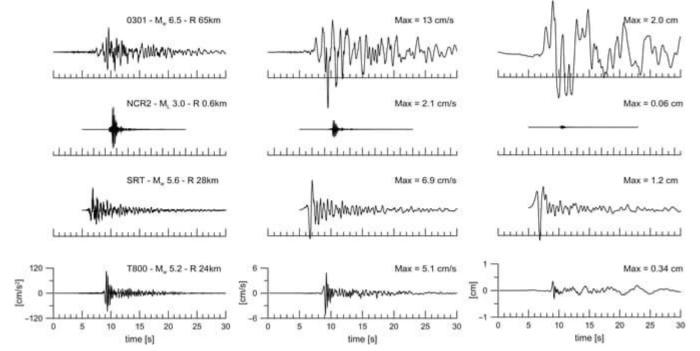
TTP: To sort their in minute bashers. To cost by absolute time of event use Timestamp relation. TTP: Tort by up to a minute. Itali doff key while choicing.

(12) Table can often be parted right into other apps each as moral. Double-dick to select all, then only and parts.

Download data as Excel Binary NetCDF

-

1-	Month	* Day	Time UTC	* Mag	 Lat 	+ Lon	* Depti	i keri	Region	USGSID	Timestamp	
021	01	21	14.27.06	5.0		35.0409	33.7163	62.9	1 km NE of Pérgamos, Cyprus	sis7000d23a	1011239228	
020	12	05	12-44-40	5.3		36.0777	31.8657	80.9	45 km WSW of Gazipaga, Turkey	sm7000crif1	1801172280	
018	09	12	06.21.48	53	1	36.1850	31.0563	50.0	59km SE of Tekkova, Turkey	us2000hdam	1898733308	
015	04	15	08.25 11	5.3	1	34.8078	32.3311	10.0	6km WSW of Klasoverga, Cyprus	sis200026mv	1429088311	
015	06	18	21.19.44	5.0	1	35 6473	31,2871	47.3	115km SW of Gazipasa, Turkey	am1000339b	1430832734	
013	12	28	15/21:04	5.9	1	36.0280	31.3100	40.7	77km SSW of Avealar, Turkey	smc000tax	1385244064	
012	05	-11	18.40.29	5.4	1	34.3040	34,1420	16.6	Cyprus region	wap000jkam	1336792109	
909	12	22	06 06:23	5.3		35.7200	315110	63.5	Cyprus region	srp000858s	1201401803	
005	05	14	23.40.50	5.1		35.6070	31,5820	69.2	Cyprus region	wsp000dqua	1118114410	
003	05	63	11.22.40	5.5		36.6840	31.5360	135.3	western Turkey	amp0000swh3	1051983880	
999	00		04.27.55	5.6		34.7910	32.9390	33.0	Cyprus region	wap0009cw8	804348578	
999	05	25	17 15.21	5.6		34.4780	32.1310	10.0	Cyprus region	srep60068rd	827982921	
999	08	17	15 06 27	51		34.0140	32.8590	33.0	Cyprus region	wsp0009d7b	014902387	
997	01	13	10:19:26	5.7		34.3050	32.3260	33.0	Cyprum region	amp0007vtt	853150766	
996	10	89	13.10.52	6.6		34.5560	32.1260	33.0	Cyprus region	sep0007i4u	344309952	
995	10	69	14 19 37	57		34.5910	32 2000	33.0	Cyprus region	smp0007r50	\$44870777	
996	10	10	01 10 22	5.7		34.5600	32.2140	33.0	Cyprul region	wap0007r6q	844909822	
996	11	27	00.44.23	5.4		34,4990	32.0600	33.0	Cyprum region	arep/009798m	849065483	
996	10	00	14.00.10	5.2		34,4960	32.0630	33.0	Cyprus region	wsp0007r4z	844889210	
995	10	10	04 54 46	5.2		34.6480	32 2650	33.0	Cyprus region	srep0007e74	\$44623339	
996	10	00	18 22 37	5.1		34.4920	32.2270	33.0	Cyprus region	wsp0007v5f	844273157	
996	12	02	04.08.48	5.0		34.4010	32.1840	33.0	Cyprum region	amp0007hux	\$45458728	
996	10	10	00.23.39	5.0		34.4950	32.1580	33.0	Cyprus region	wap0007v6j	844907019	
996	10	25	06.00.48	5.0		34 4580	32 3000	33.0	Cyprus region	srep6097rr4	845877548	
995	02	23	21.03.01	5.9		35.0460	32.2790	10.0	Cyprus region	arap00068du	782673381	
995	05	.29	04 58 32	5.3		35 0390	32,2460	10.0	Cyprus region	amp0006y6m	8011735612	
995	02	23	21.40.31	5.3	1	35.9430	32 3140	10.0	Cyprus region	wsp0006ie2	782475831	
993	03	22	11.03.43	5.4	1	34.6970	34 4020	32.1	Cyprus region	smp8005pyb.	722798223	
991	12	05	20.21.55	5.2	1	36.1350	31.8070	114.9	western Turkey	wsp000502z	891884515	
987	01	15	11:19:34	5.0	1	34.6780	33,9050	34.4	Cyprus region	uxp00031pn	±37707814	
984	03	28	16.15.05	5.0	1	34.7860	33.6060	34.4	Cyprus region	wap000232c	440338608	
979	05	28	09.27.32	5.9	1	36.4090	31.7510	96.0	western Turkey	srep00010ys	290131682	
979	12	21	06.21.34	5.3	1	36.1840	31.5100	79.0	western Tuckey	usp00014sz	315480334	
977	06	01	12.54.49	57	1	36.2430	31.3440	67.0	western Turkey	avp0000p46	234017888	
976	01	12	17.50.24	51		34,3100	32 5290	33.0	Cyprue region	sup0005edf	19031703+	
976	01	12	20.19.57	5.0	2	34 3860	32.4530	20.0	Cyprus region	unp0000edj	190335981	


2

K.T.M.M.O.B İNŞAAT MÜHENDİSLERİ ODASI CHAMBER OF CIVIL ENGINEERS

1. National Civil Engineering Symposium

GROUND MOTIONS COMPONENTS

Ever since ground motions have been recorded in 1940 and it has been tried to develop ways which can quantify the earthquakes.

These cover characteristics such as **amplitude of motion**, **frequency content of motion**, **duration of motion**, etc

K.T.M.M.O.B İNŞAAT MÜHENDİSLERİ ODASI CHAMBER OF CIVIL ENGINEERS

1. National Civil Engineering Symposium

GROUND MOTIONS COMPONENTS

Commonly used and known as design basis ground motion parameters (DBGM):

- Peak ground acceleration (PGA) value
- Response spectrum
- Acceleration time history of a site

K.T.M.M.O.B İNŞAAT MÜHENDİSLERİ ODASI CHAMBER OF CIVIL ENGINEERS

1. National Civil Engineering Symposium

SELECTED GROUND MOTIONS COMPONENTS

Following parameters of the selected ground motions have been selected to study the effectiveness of the parameters:

- Peak ground acceleration (PGA)
- Peak ground velocity (PGV)
- Peak ground displacement (PGD)
- Pulse period (Tp)

In addition, in order to better understand the correlation between the selected parameters of PGA, PGV and PGD the ratio of **PGA/PGV** and **PGV/PGD** have been considered in this study.

K.T.M.M.O.B İNŞAAT MÜHENDİSLERİ ODASI CHAMBER OF CIVIL ENGINEERS

1. National Civil Engineering Symposium

SELECTED GROUND MOTIONS

In this direction, **100 pulse-like ground motions** have been selected whose pulse period ranges between the **0.5** and **13 sec**.

#	EQ Name	Year	Mag.	Тр (s)	Duratio n (s)	PGA (cm/s^ 2)	PGV (cm/s)	PGD (cm)	PGA/P GV (1/s)	PGV/PG D (1/s)
1	NORTHR_PAC175	1994	6.69	0.588	19.98	407.89	44.29	5.01	9.21	8.84
2	NORTHR_PKC360	1994	6.69	0.728	39.98	424.60	51.38	7.21	8.26	7.12
3	GREECE_K-KAL-NS	1986	5.4	0.789	15.20	158.31	12.79	1.31	12.38	9.76
4	SANSALV_GIC180	1986	5.8	0.805	9.02	412.84	62.29	13.09	6.63	4.75
5	NORTHR_SPV360	1994	6.69	0.931	47.80	914.30	76.27	17.67	11.99	4.31
6	KOBE_KJM090	1995	6.9	1.092	149.98	617.69	76.11	18.31	8.12	4.15
7	SANSALV_NGI180	1986	5.8	1.127	20.27	396.29	56.38	19.64	7.03	2.87
8	COYOTELK_G03140	1979	5.74	1.155	26.85	251.50	29.58	6.34	8.50	4.66
9	COYOTELK_G06230	1979	5.74	1.232	27.10	413.77	44.35	12.44	9.33	3.56
10	MORGAN_G06090	1984	6.19	1.232	30.00	286.71	36.49	5.95	7.86	6.13
					:			:		

Table 1: Selected pulse-like ground motions

K.T.M.M.O.B İNŞAAT MÜHENDİSLERİ ODASI CHAMBER OF CIVIL ENGINEERS

1. National Civil Engineering Symposium

In this study, the selected ground motions have been categorized as shown in the following table:

Ground Motions Components							
PGA/PGV	PGV/PGD	Тр					
1 <pga pgv<5<="" td=""><td>1<pgv pgd<4<="" td=""><td>0.5<tp<4< td=""></tp<4<></td></pgv></td></pga>	1 <pgv pgd<4<="" td=""><td>0.5<tp<4< td=""></tp<4<></td></pgv>	0.5 <tp<4< td=""></tp<4<>					
5 <pga pgv<9<="" td=""><td>4<pgv pgd<7<="" td=""><td>4<tp<8< td=""></tp<8<></td></pgv></td></pga>	4 <pgv pgd<7<="" td=""><td>4<tp<8< td=""></tp<8<></td></pgv>	4 <tp<8< td=""></tp<8<>					
9 <pga pgv<12.4<="" td=""><td>7<pgv pgd<10<="" td=""><td>8<tp<13< td=""></tp<13<></td></pgv></td></pga>	7 <pgv pgd<10<="" td=""><td>8<tp<13< td=""></tp<13<></td></pgv>	8 <tp<13< td=""></tp<13<>					

K.T.M.M.O.B İNŞAAT MÜHENDİSLERİ ODASI CHAMBER OF CIVIL ENGINEERS

1. National Civil Engineering Symposium

STUDY MODEL

In this investigation two different type of buildings, **Semi-Flexible** and **Flexible building** with and without seismic isolation system have been considered.

In this direction, based on ASCE, the building whose fundamental period is **less than 1** are in the category of **Semi-Flexible** building or else it is in the category of **Flexible building**

K.T.M.M.O.B INŞAAT MÜHENDİSLERİ ODASI CHAMBER OF CIVIL ENGINEERS

1. National Civil Engineering Symposium

SEISMIC ISOLATION

Due to simplicity and with the highest efficiency compared to the other seismic isolation system, **Lead Core Rubber (LRB)** bearing have been selected as an isolator system to be used in the selected buildings.

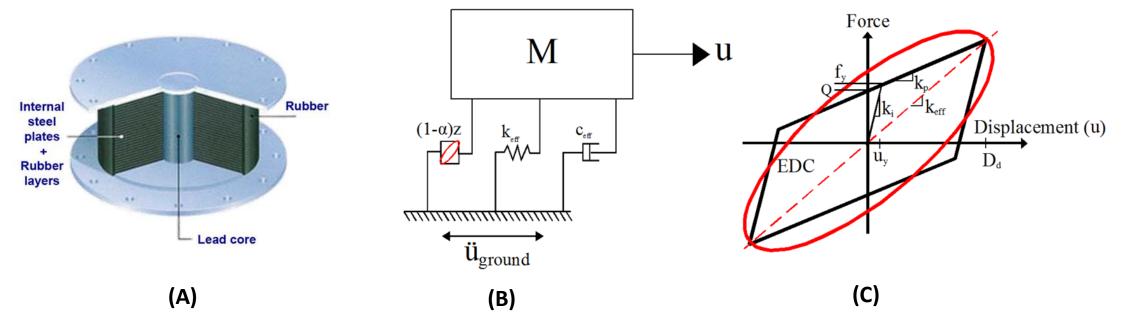


Figure 1: a) Idealization of the LCRB system; b) Hysteretic model of the LCRB

K.T.M.M.O.B İNŞAAT MÜHENDİSLERİ ODASI CHAMBER OF CIVIL ENGINEERS

1. National Civil Engineering Symposium

ANALYITICAL MODEL

Stick Model:

The modeling and time history analyses of the considered buildings have been carried out using **MATLAB** considering elastic shear-beam stick model.

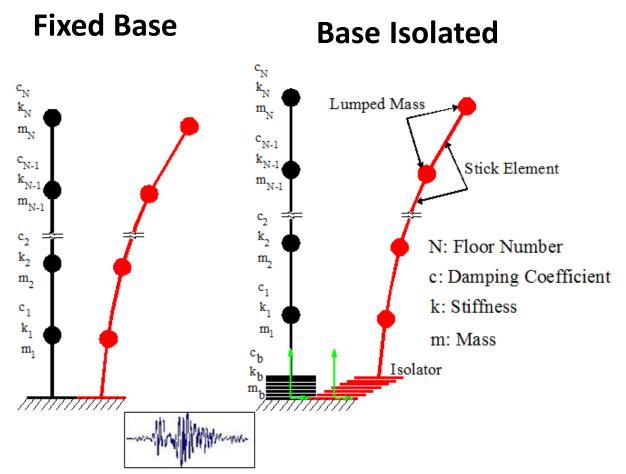


Figure 2: Stick model of fixed and seismic isolated building

K.T.M.M.O.B İNŞAAT MÜHENDİSLERİ ODASI CHAMBER OF CIVIL ENGINEERS

1. National Civil Engineering Symposium

SUPPER-STRCURE PROPERTIES

5- and 20-story building with the following mass and stiffness properties have been investigated:

Floor	M	Stiffness proportion	Stiffness(k)	Floor	Mass	Stiffness proportion	Stiffness (k)	Damping ratio
level	Mass (ton)		(N/cm)	level	(ton)		(N/cm)	for steel structure (ξ_s)
		5-story				20-story		
1	720	$k_1 = 1k$	1683×10^{6}	1-4	720	$k_1 = 1k$	1589×10^{6}	
2	720	$k_2 = 0.8k$	1346×10^{6}	5-8	720	$k_2 = 0.8k$	1271.2×10^{6}	
3	720	$k_3 = 0.64k$	1075×10^{6}	9-12	720	$k_3 = 0.64k$	1016.7×10^{6}	2 %
4	720	$k_4 = 0.51k$	860×10^{6}	13-16	720	$k_4 = 0.51k$	813.568×10^{6}	2 70
5	360	$k_5 = 0.41k$	683×10^{6}	17-19	720	$k_5 = 0.41k$	650.854×10^{6}	
Total	3240			20	360	$k_5 = 0.41k$	650.854×10^{6}	
TOTAL	5240	-	-	Total	14040	-	-	

Table 3: Stiffness proportion and mass properties of the considered buildings (Fixed Base)

Table 4: Details of mass calculation for each story

Total floor area for a single story	$30 \text{ m} \times 30 \text{ m} = 900 \text{ m}^2$
Story Dead load (Floor Dead load)	$650 \frac{\text{kg}}{m^2} \times 900 \ m^2 = 585000 \frac{\text{kg}}{\text{story}}$
Other assumed mass	$53100 \frac{\text{kg}}{\text{story}}$
$\psi_{2i}LL \ \ where \ LL=300 \frac{kg}{m^2}$	$0.3 \times 300 \frac{kg}{m^2} \times 900 \ m^2 = 81000 \frac{kg}{story}$
Seismic mass (DL+ ψ_{2i} LL)	$719100 \frac{\text{kg}}{\text{story}} \cong 720000 \frac{\text{kg}}{\text{story}}$

K.T.M.M.O.B İNŞAAT MÜHENDİSLERİ ODASI CHAMBER OF CIVIL ENGINEERS

1. National Civil Engineering Symposium

INPUT VARIABLITY OF THE ISOLATOPR

In put variability of the mechanical properties of the seismic isolation system:

From each mechanical property, 300 variables have been selected randomly and time history analysis has been implemented. Overall, 30000 analyses have been conducted for seismic isolation systems.

Variable parameters	mean	Standard deviation	Mechanical parameters Ranges
Isolator period (T _{eff})	4.012 s	0.475 s	$2 \text{ s} \leq T_b \leq 6 \text{ s}$
Damping Ratio (β_{eff})	0.1	0.0118	$0.05 \leq \beta_{eff} \leq 0.15$
Design displacement (D _d)	72.44 cm	6.544 cm	$45~\text{cm} \leq D_d \leq 100~\text{cm}$
Yielding displacement ($u_y = \frac{Q}{k_i - k_p}$)	1.5 cm	0.246 cm	$0.8~\text{cm} \leq u_y \leq 2.56~\text{cm}$

Table 5: Input uncertain variables mean, standard deviation and ranges

K.T.M.M.O.B İNŞAAT MÜHENDİSLERİ ODASI CHAMBER OF CIVIL ENGINEERS

1. National Civil Engineering Symposium

RESULTS AND DISCUSSION (TOP FLOOR ACCELERATION)

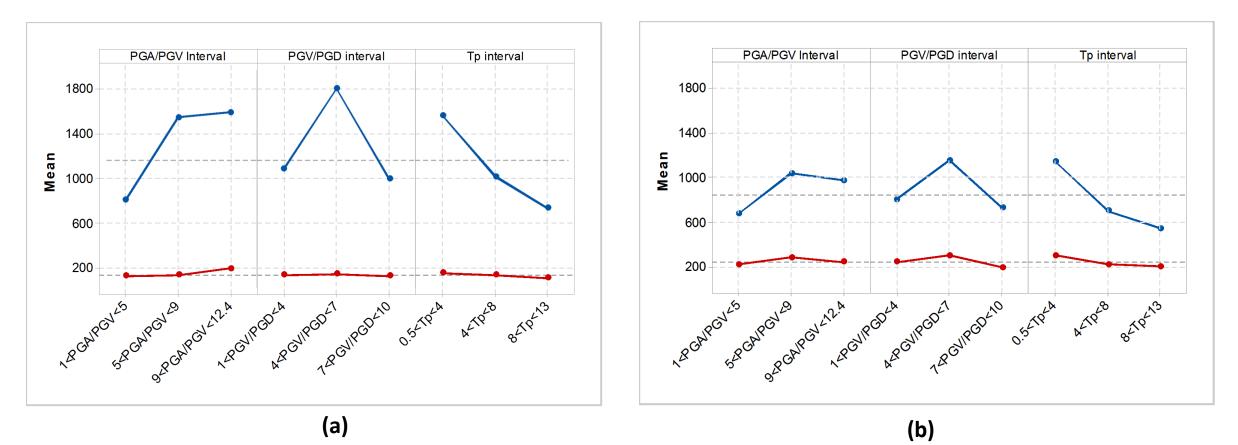


Figure 3: Effectiveness of ground motions parameters to the top floor Acceleration a) <u>5-story</u> (rigid building) b) <u>20-story</u> (flexible building) (Blue: FB, Red: BIB)

K.T.M.M.O.B İNŞAAT MÜHENDİSLERİ ODASI CHAMBER OF CIVIL ENGINEERS

1. National Civil Engineering Symposium

RESULTS AND DISCUSSION (TOP FLOOR DISPLACEMENT)

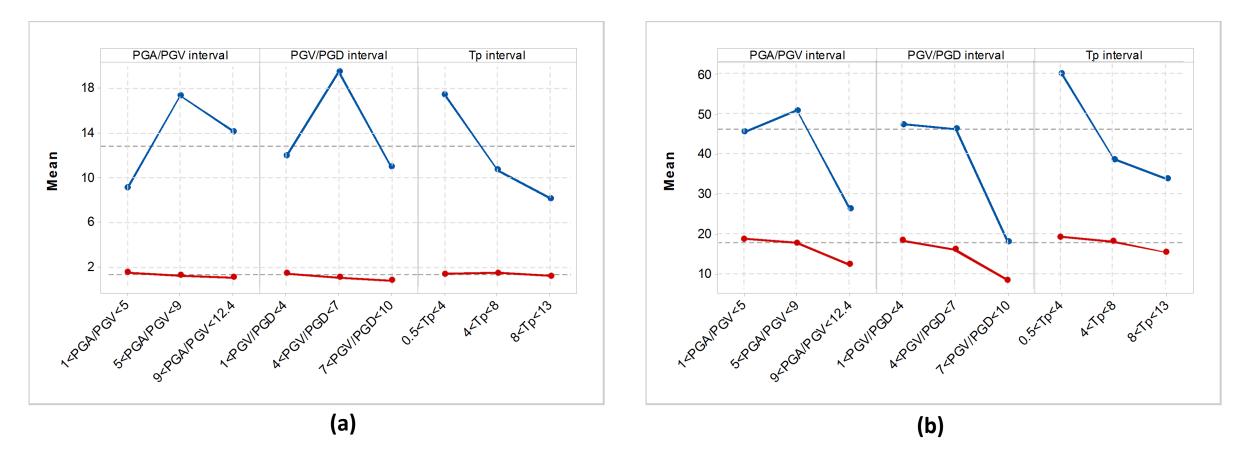


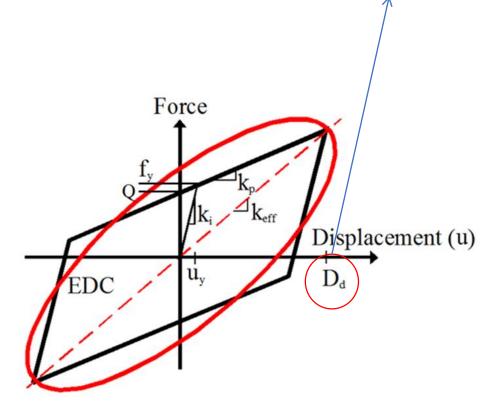
Figure 4: Effectiveness of ground motions parameters to the top floor Displacement a) <u>5-story</u> (rigid building) b) <u>20-story</u> (flexible building) (Blue: FB, Red: BIB)

K.T.M.M.O.B İNŞAAT MÜHENDİSLERİ ODASI CHAMBER OF CIVIL ENGINEERS

1. National Civil Engineering Symposium

In following, probability failure of bearing responses for seismic isolated building have been discussed.

In order to evaluate the probability failure, bearing responses limited to the peak ground responses:


 Telecommunication buildings, hospitals, and other important buildings usually maximum horizontal accelerations are limited to 300 cm/s².
 But from contents to contents the limitation is different and depends on the operating system and varies between 250 cm/s² to 1000 cm/s².

K.T.M.M.O.B INŞAAT MÜHENDİSLERİ ODASI CHAMBER OF CIVIL ENGINEERS

1. National Civil Engineering Symposium

2) Performance limit for the **peak bearing displacement**

K.T.M.M.O.B İNŞAAT MÜHENDİSLERİ ODASI CHAMBER OF CIVIL ENGINEERS

1. National Civil Engineering Symposium

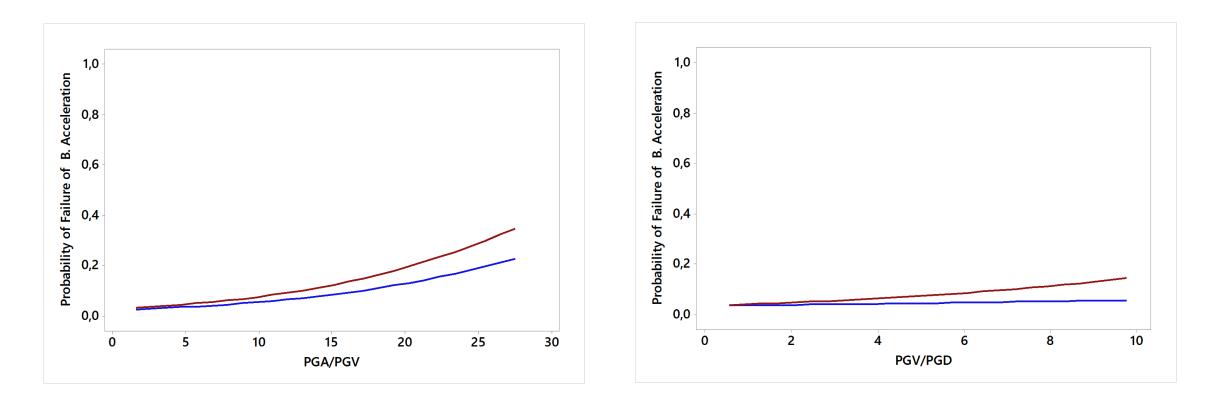


Figure 5: Probability failure of Bearing Acceleration based on PGA/PGV and PGV/PGD (Blue: 5-story , Red: 20-story)

1. National Civil Engineering Symposium

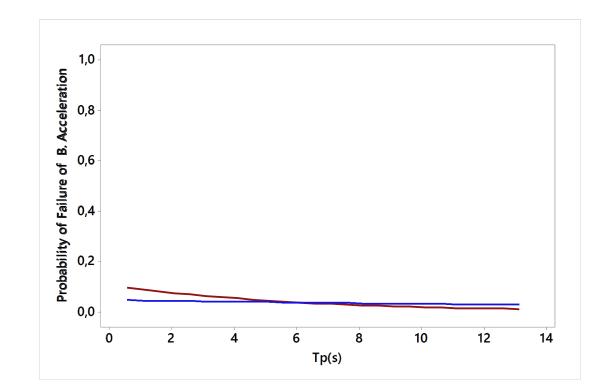


Figure 6: Probability failure of Bearing Acceleration based on Pulse-period (Blue: 5-story , Red: 20-story)

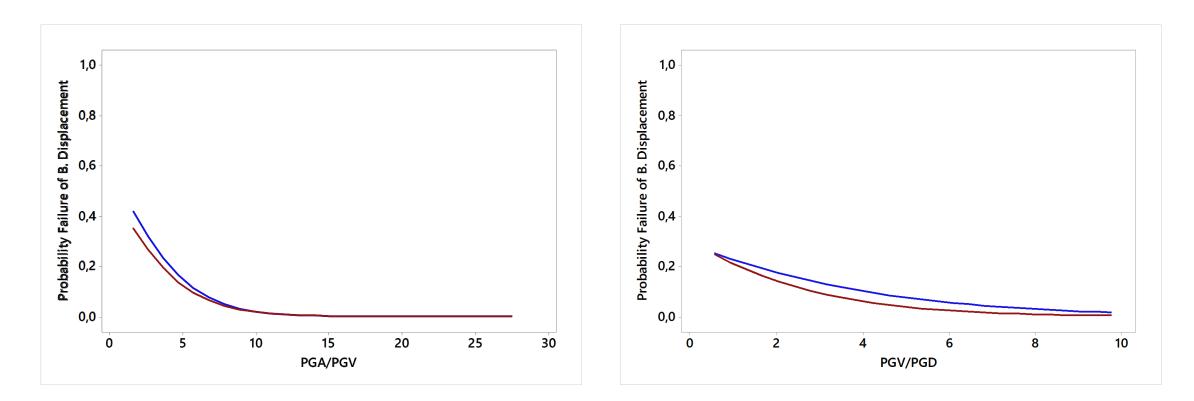


Figure 7: Probability failure of Bearing Displacement based on PGA/PGV and PGV/PGD (Blue: 5-story , Red: 20-story)

1. National Civil Engineering Symposium

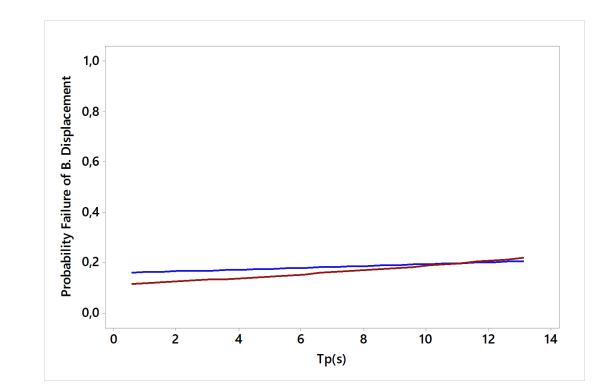


Figure 8: Probability failure of Bearing Displacement based on Pulse-period (Blue: 5-story , Red: 20-story)

CONCLUSION

Following table illustrates the **effectiveness** of the group of the ground motions to the top floor responses of the considered buildings:

				op Floor A	ccelerati	on	Top Floor Displacement			
			FB bı	iilding	BI building		FB building		BI building	
			Rigid	flexible	Rigid	flexible	Rigid	flexible	Rigid	flexible
S	2 S	1 <pga pgv<5<="" th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>Х</th></pga>								Х
Jent	PGA/PGV	5 <pga pgv<9<="" td=""><td>Х</td><td>X</td><td></td><td></td><td>Х</td><td>Х</td><td></td><td>Х</td></pga>	Х	X			Х	Х		Х
Ipor		9 <pga pgv<12.4<="" td=""><td>Х</td><td>X</td><td></td><td></td><td></td><td></td><td></td><td></td></pga>	Х	X						
Ground Motions Components	GD	1 <pgv pgd<4<="" th=""><th></th><th></th><th></th><th></th><th></th><th>Х</th><th></th><th>Х</th></pgv>						Х		Х
ons	PGV/P	4 <pgv pgd<7<="" td=""><td>Х</td><td>Х</td><td></td><td></td><td>Х</td><td>Х</td><td></td><td>Х</td></pgv>	Х	Х			Х	Х		Х
Aoti	Ъд	7 <pgv pgd<10<="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></pgv>								
nd N		0.5 <tp<4< th=""><th>Х</th><th>X</th><th></th><th></th><th>Х</th><th>Х</th><th></th><th></th></tp<4<>	Х	X			Х	Х		
irou	ď	4 <tp<8< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tp<8<>								
G		8 <tp<13< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tp<13<>								

K.T.M.M.O.B İNŞAAT MÜHENDİSLERİ ODASI CHAMBER OF CIVIL ENGINEERS

1. National Civil Engineering Symposium

Probability failure of the seismic isolated buildings:

	Bearing Ac	celeration	Bearing Displacement			
	Low-rise building	High-rise building	Low-rise building	High-rise building		
PGA/PGV	20% for higher value of the ratio	35% for higher value of the ratio	35% for lower value of the ratio	40% for lower value of the ratio		
PGV/PGD	0%	15% for higher value of the ratio	25% for lower value of the ratio	25% for lower value of the ratio		
Тр	0%	10% for lower value of pulse period	20% for higher value of the ratio	20% for higher value of the ratio		

K.T.M.M.O.B İNŞAAT MÜHENDİSLERİ ODASI CHAMBER OF CIVIL ENGINEERS

1. National Civil Engineering Symposium

