Analysis of 2018 Dikmen Flood and Remedial Measures

MSc Student, Noor Ahmad Yaqubi

Flood Modelling and Flood Management Middle East Technical University NCC

K.T.M.M.O.B İNŞAAT MÜHENDİSLERİ ODASI CHAMBER OF CIVIL ENGINEERS

1. National Civil Engineering Symposium

OUTLINE

□ Importance Of Developing Flood Assessment Maps

Development of Flood Maps

Dikmen 2018 Flood Map (on-going study)

□Flood Prevention and Protection Measures

K.T.M.M.O.B İNŞAAT MÜHENDİSLERİ ODASI CHAMBER OF CIVIL ENGINEERS

1. National Civil Engineering Symposium

Importance of Developing Flood Assessment Maps

- Flood hazard assessment and mapping helps us identify the areas at risks.
- Consequently, can improve flood risk management and disaster preparedness based on (e.g.,100-year events, 50-year events etc.)
- Preparedness measures can include changes in land-use planning, implementation of specific flood-proofing measures, creation of emergency response plans, etc.
- Flood Maps can encourage people living and working in flood-prone areas to find out more about the local flood risk and to take appropriate action.

K.T.M.M.O.B İNŞAAT MÜHENDİSLERİ ODASI CHAMBER OF CIVIL ENGINEERS

1. National Civil Engineering Symposium

Data Sets

- Topographic, digital elevation models(DEM)
- EU Guideline for DEM used in flood mapping demands minimum requirement of 10m*10m, but (5m*5m) are preferred.
- ➢ To Generate DEM, following methods and sources can be used:
- LiDAR (Light Detection and Ranging), (Not Available for TRNC).
- SRTM (Shuttle Radar Topography Mission), (30mx30m Available).
- Conventional surveying and contours maps.
- Aerial Photogrammetry technique (Use of Drones).

1. National Civil Engineering Symposium

Historical Data

- Historical Data are needed to rise awareness, as well as for the Calibration of flood modelling.
- Calibration to a past historic event is the most effective method to measure a model performance [1].
- Historical Data that can be used:
- 1. Flood Maps
- 2. Water level records in river and channels
- 3. Velocity records
- 4. Flood Marks
- 5. Aerial and satellite photos
- 6. Pictures of flood

[1] Huxley, C., & Ryan, P. (2016). Flood Modeling: How Accurate is Your Model? November. www.floodplain.org

https://commons.wikimedia.org/wiki/File:Aerial_View_Missouri_River_Bismark-Maden_flood.jpg

K.T.M.M.O.B İNŞAAT MÜHENDİSLERİ ODASI CHAMBER OF CIVIL ENGINEERS

1. National Civil Engineering Symposium

*Land Use and related Data

Surface Roughness (Manning's Values)

Hydrological Models

- Are used to determine hydrological parameters (e.g., flow hydrographs) of flood waves from the inputs (e.g., precipitation data).
- Hydrological parameters are used as input data to Hydraulic Models.

www.chiefscientist.qld.gov.au/floods

Hec-HMS

K.T.M.M.O.B İNŞAAT MÜHENDİSLERİ ODASI CHAMBER OF CIVIL ENGINEERS

1. National Civil Engineering Symposium

- Flood routing can be described in 1D, 2D, or 1D/2D models.
- Wide range of Tools can be used: Mike11 1D/2D, Hec-RAS 1D/2D, Flo-2D.
- Result output parameters are, flood extent, flow depth, flow velocity, water surface elevation, etc.

K.T.M.M.O.B İNŞAAT MÜHENDİSLERİ ODASI CHAMBER OF CIVIL ENGINEERS

1. National Civil Engineering Symposium

2018 Dikmen Flood Map (on-going study) Flow Depth Map (Hec-RAS 6.0)

Flow Velocity Map (Hec-RAS 6.0)

K.T.M.M.O.B İNŞAAT MÜHENDİSLERİ ODASI CHAMBER OF CIVIL ENGINEERS

1. National Civil Engineering Symposium

Dikmen 2018 Flood Map

➤ 2018 Observed Flood Area

≻ Modelled Flood Map in Hec-RAS 6.0

K.T.M.M.O.B İNŞAAT MÜHENDİSLERİ ODASI CHAMBER OF CIVIL ENGINEERS

1. National Civil Engineering Symposium

Flood Prevention and Protection Measures

Structural Measures:

- A. Construction of dam, reservoirs, channels, levees, etc.
- B. Flood Proofing of new and existing structures:
- 1. New building can be raised above probable flood levels.
- 2. Installation of protective walls, waterproof closures can be done for the existing structures.
- 3. Bridges must be designed accordingly to prevent their damages and blockage due to flow of debris in the flood.

□Non-structural Measures:

A. Land use planning at local or municipal level can be useful in reducing future flood damages.

K.T.M.M.O.B İNŞAAT MÜHENDİSLERİ ODASI CHAMBER OF CIVIL ENGINEERS

1. National Civil Engineering Symposium

K.T.M.M.O.B INŞAAT MÜHENDİSLERİ ODASI CHAMBER OF CIVIL ENGINEERS

1. National Civil Engineering Symposium

